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Abstract—The RISC-V architecture, originally designed to
satisfy research requirements at the University of California,
Berkeley, has enabled the development of fully open-source
computing systems. This breakthrough, while critical for the
establishment of a fully free computing environment, has not
led to the development of many consumer electronics. Doing so
would require the development of custom chips, input/output
systems, and related firmware and drivers for a fully free and
open-source operating system. In this whitepaper, we outline
a laboratory with the aim of developing, from start to finish,
a prototype of a fully open-source, provably secure, and fully
(and possibly purely) functional high-performance computing
environment. We also present a sampling of potential related
research directions, touching on subjects as diverse as hardware
security, homotopy type theory, and compositional design.

I. INTRODUCTION

A. On Freedom

The free and open-source software (Foss) movement has
gained significant traction since its inception, promoting the
four essential user freedoms to run, study and change, redis-
tribute, and modify computer programs [1]. The work of
the Free Software Foundation and notable contributors like
Richard Stallman [2] have resulted in these ideas having a
significant impact on modern software development. As a
result, Foss tools are more accessible than ever, supported by
a growing and dynamic community of hackers [3].

While these developments are positive and broad in scope,
the focus on software has led to a severe lack of free and open-
source hardware needed to provide the necessary compute
for ross applications [4]. This has led in some cases to
great disparities and loss of user freedom—take for example
the proprietary nature of the cupa ecosystem as a result of
proprietary Nvipia hardware [5].

The fundamental issues with proprietary software raised
by proponents of Foss alternatives—namely that proprietary
applications are inherently malware and often spyware, that
they discourage community involvement and impose corporate
limits on user freedom, and that they are significantly less
secure than open systems [6]—remain (likely with greater
importance) in the context of hardware. As the basis of all
computational power, proprietary hardware systems infect the
software systems that they will eventually be trusted with
running [7].

Proprietary hardware systems cannot be trusted to run Foss
software—while proprietary spyware is limited in what data
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it can collect due to hardware and operating system level
constraints, there are no limits to what information a fully
proprietary hardware product can collect and transmit without
user knowledge [8].

Consumer electronics, the most prolific examples of propri-
etary hardware systems, are inaccessible to their consumers,
who cannot modify or inspect their internals and whose inter-
actions with the device are entirely determined by malicious
interests. Proprietary software may strip users of ownership
of an information good, but proprietary hardware strikes at
the right to repair [9].

Lastly, when proprietary software is insecure, its vulnerabil-
ities are limited by the environment to which it is constrained
to run. When this environment is also proprietary—e.g. on
Windows systems—the results can be catastrophic [10]. How-
ever, vetted underlying open-source systems can contain these
vulnerabilities to reasonable levels. However, vulnerabilities in
proprietary hardware components open up critical concerns,
rendering all software systems deployed on such hardware
completely insecure. An issue in a hardware random number
generator in such a way that it does not produce cryptograph-
ically secure random numbers, for example, could lead to
catastrophic security implications making modern encryption
impossible. Developing open systems subject to public review
can greatly increase transparency and system security [11].

The development of free and open-source hardware (FOSH)
eliminates these concerns and allows the development of
entirely free, provably secure systems. This goal, despite its
immense potential and appeal to almost all consumers of
computational power, has yet to be realized in its fullest form
—proprietary hardware systems dominate consumer electron-
ics and, even in environments where efficiency, security, and
control are highly valued, alternatives are rare [7].

To the best of our knowledge, a fully free and open-
source, provably secure laptop does not exist. The first project
of the OpenCompute Laboratory will be to challenge the
status quo in hardware development by utilizing only FosH
components and fabricating custom parts where necessary.
The end product, which will rival existing proprietary laptop
designs, should be fully usable by the typical consumer and
have feature-parity with standard laptop models. Embarking
on this project, however, will not be an exercise purely in
hardware development but also in the development of free and
open-source software to accompany and extend it, allowing
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for the trusted execution of Foss software on a rFosH platform,
unifying these two interconnected regimes.

B. On Progress

Having discussed the security implications and necessity for a
fully open-source and provably secure hardware system—i.e.
why we would want to build such a system in the first place—
we now turn our attention to what current progress looks like
in the field—i.e. how we can build the system and why now
is the time to embark on this challenge. This inevitably leads
us to the story of the development of the risc-v instruction
set architecture (1sA), which we outline below.

In May of 2010 at the University of California, Berkeley,
Professor Krste Asanovi¢ and graduate students Yunsup Lee
and Andrew Waterman in the Parallel Computing Laboratory
(the “Par Lab”) were working on improving hardware for
parallel processing [12]. They sought to work from the ground
up to improve and experiment with novel hardware systems,
developing the Chisel hardware construction language in the
process [13]. Chisel was then used to design an entirely new
processor, based on the risc-v instruction set, primarily for
theoretical research purposes.

The Par Lab open-sourced both Chisel and the risc-v
1sA under the Berkeley Software Distribution (Bsp) license,
allowing it to be freely used and distributed. The 1sa specifi-
cation was also released under a Creative Commons license,
allowing for public review and further research [12].

The impact of the Par Lab’s risc-v 1sA cannot be under-
stated—prior to its development, the primary instruction
set architectures in use were x86 and ArM-based, both of
which are completely proprietary. Other architectures were
practically unusable, presenting a significant roadblock to the
development a fully open-source cpu, the most significant
component of computation [14].

The development of the Risc-v 1sa is quite similar to
our aspirations for research directions in the OpenCompute
Laboratory. The development of risc-v, one of the most
significant innovations in open computing, was the result of
research in parallel processing and related hardware acceler-
ations. In much the same way, we aim to develop fundamental
breakthroughs in open-source hardware by pursuing the most
far-reaching and abstract research directions, in the interest of
identifying promising applications.

The core of our laptop will consist of an open-source RISC-v
processor. However, as risc-v is only an instruction set archi-
tecture, we will likely need to fabricate a custom physical chip
based on an existing rR1sc-v processor design, as, to the best
of our knowledge, no open-source physical chip supporting
the risc-v architecture is available for purchase. However, due
to the theoretical nature of risc-v research, numerous open-
source high-performance chip designs exist—they only need
to be fabricated for use in a laptop [15].

Once an open-source cpu has been adequately fabricated,
the remaining issues are much simpler to solve, the primary
ones being the implementation of open-source RaAM and Gpu,
though existing implementations exist, as we discuss later.
Most other components for computation are significantly
simpler than a cpu core, and numerous open-source imple-

mentations exist, facilitating the completion of the fully free
laptop design. A similar project based on the risc-v archi-
tecture has already been attempted in [14].

We believe also that the timing of this project is optimal
given that the risc-v processor architecture, having matured
for several years, is now supported by most fundamental rFoss
components, namely the Linux kernel [14], C compilers [16],
and even high-level programming languages like Haskell [17].
This significantly simplifies the porting of standard applica-
tions to run on a risc-v based system, especially when using
an operating system with a sufficiently advanced source-based
programmatic build tool, like NixOS [18].

II. RELATED WORK

As far as we can tell, the end goal of this project—an
entirely open-source, fully free laptop—does not exist. Indeed,
we have not even been able to find open-source versions
of certain critical hardware components, like memory chips,
suggesting that a project of this scale has not been successfully
attempted. Nevertheless, much of our work will utilize and
extend existing progress in this space—while an entirely open-
source laptop does not yet exist, there are many almost free
alternatives and there exist liberated versions of most essential
hardware components. We detail our findings in the literature,
challenges we anticipate in pursuit of our goal, and potential
extensions of current research in this section.

A. Similar rFosH systems

The most similar laptop to what we aim to build currently
available for purchase is the MNT Reform, which is built
from the ground up to ensure compatibility with Foss and
utilizes mostly FosH components. However, this is notably not
a fully free laptop as it is built on a proprietary SoM [19].
It nevertheless remains a good example of what we aim to
achieve since its processor architecture is, unlike x86 systems,
fully open-source.

Its open nature offers numerous benefits to potential
consumers beyond merely theoretical advantages—open com-
ponents allow for greater modularity, user-friendly design
allows for rapid disassembly and reassembly, and the keyboard
adheres to the OpenRGB standard for full user control of
lighting settings. It achieves this with a relatively powerful
processor and 32 GB of RAM, on par with modern proprietary
laptops.

However, in addition to the few proprietary components it
does contain, the laptop is expensive, heavy, and lacks full
integration of hardware and software components [20]. We
aim to meet or exceed MNT Reform’s performance while
improving on price, weight, and integration. These concerns
are severe enough to make the laptop unusable for most
consumers [21], which is a critical concern if we want to
increase uptake of FosH and Foss in general.

Other notable advancements in the development of the fully
free laptop include work by Purism on the Librem [22]. This
laptop is nowhere near our specification of fully free, as it
uses a proprietary Intel chip architecture, but their work in
implementing and enforcing hardware security is intriguing



and will likely guide our own analysis of hardware security
concerns. Some of their key innovations include the introduc-
tion of a USB security key, Bios and boot sequence security
enhancements, and tamper-evident sealing. They have also
added a Trusted Platform Module (Tpm) chip for secure boot
verification—our goal will be to create a custom, fully open-
source TPM chip for this purpose.

Most other “open-source” laptops are significantly further
away from meeting the criteria that we seek to achieve in our
design. Pinebook [23], System76 [24], and Framework [25]
have been noted for their open designs, but in reality their
products are only “open” in the physical sense that they can
be easily taken apart. The underlying hardware components
are still mostly proprietary and, in this sense, they are not a
major departure from traditional laptop designs. We reject this
approach to laptop design in favor of a more transparent one,
with a singular focus on maximizing user freedom throughout
the process by choosing hardware and software components
that facilitate this goal.

B. Anticipated Challenges

Given our preliminary findings, we expect that the greatest
obstacles to the completion of our work will lie in the
hardware domain, specifically in producing fully open-source
components for traditionally proprietary hardware. In partic-
ular, fully free ram chips and cpu architectures may be
impossible to find and may require us to design and fabricate
a custom chip or some variation of a partially open-source
foundation or design.

The closest open-source design of a ram chip that we
could find is the product of work by the OpenDIMM project
[26], which works to increase transparency in the ecosystem
for memory sticks. Their work has resulted in a preliminary
model of a fully open-source ram chip that we would need
to modify and fabricate ourselves for incorporation into a
custom-built laptop.

There is also the Openram project [27], which is a Python
toolset for creating and testing different rRam designs. This
can aid in the verification of custom models and in creating
modifications to existing open-source Ram design templates.
However, it seems the extent of open-source Ram development
is purely theoretical and no such chip has been produced and
distributed.

In addition to the challenges of sourcing free ram, we
must also deal with the addition of a graphics processing unit
(cpu). While we can opt to perform all graphics on a fully
open-source rRIsC-v based cpu, to realize our goal of a high-
performance laptop, a discrete Gpu should be developed.

This presents numerous challenges, as Gpu architectures are
highly proprietary and extremely complex. Currently, the most
promising research in this space seems to be the development
of the FuryGpu, which was supposedly created by an amateur
hardware hacker. However, it is on par with ancient graphics
processing and required more than four years to develop. It is
also not open-source at the moment and numerous questions
remain about its origins and development [28]. We conclude
that designing a cpu from scratch would be possible but

fall well short of our goal to create a laptop that is high-
performance.

However, there are numerous interesting theoretical re-
search directions related to rethinking the architecture of a
Gpu that we believe might yield promising results, so we
will almost certainly pursue this as a side project. However,
for practical purposes, laptops we develop will likely lack
a discrete GPu or use a proprietary one supporting Foss
drivers if high performance is required. This is an unfortunate
compromise that we must make in the present given the
state of open-source Gpu development, though our aim is to
contribute meaningfully to this space to advance our goals in
the long-term.

C. Related Research

The primary research directions of the software team are
well-studied, though we believe not enough research has been
conducted into applications specifically related to implemen-
tation and construction of a fully open-source laptop. Here
we list some of the research that has inspired the aims of the
software team. The specific research directions of this team
and its structure are outlined in later sections Section IIT and
Section V.

One interesting area of research previously hinted at is
the development of a custom Gpu. One of the interesting
steps involved in this project would be the development of a
custom shader language for it, which we would want to be
purely functional to fundamentally restructure the language of
graphics. We would also be able to prove certain properties
of our implementations and low-level graphics correctness,
which is not possible in most existing implementations.

A prototype of what this might look like can be seen in
the Funslang shading language, which is a purely functional
shading language with Haskell-like syntax and a Haskell
compiler. It is transpiled to GLSL, a much more common
shading language. Its primary benefits are monadic separation
of syntax and semantics, a core tenet of purely functional
programming languages, lack of side effects, and an advanced
type system, among many others [29]. We will likely seek
to emulate these advancements while adding additional opti-
mizations for our custom graphics framework, as well as
possibly looking into developing alternative functional high-
level graphics interfaces.

We will similarly aim to develop methods for the formal
verification of firmware. We will likely borrow the approaches
in [30] for testing the integration of firmware and custom
hardware, which will be especially important for verifying
security properties. Current research in this domain is rela-
tively recent, but we believe there is great potential to expand
on current developments and prove more general theorems
about the firmware itself as well as its integration into the
overall laptop design.

One of our central goals will be to develop a custom
operating system or variant of an existing operating system
that can seamlessly interface with the complex custom hard-
ware components that make up the laptop. This involves two
separate research directions: one focused on developing a
custom operating system from scratch and another focused



on extending an existing operating system with specific con-
figuration and patches to create a usable user environment.
There is significant prior work in both areas to guide us in
completing these projects simultaneously.

In developing a custom operating system from scratch,
we draw great inspiration from the House operating system,
which is a purely Haskell-based system that lends itself well
to formal verification [31]. The work of the House team shows
that it is indeed possible to create a fully functioning operating
system from scratch, including drivers, window managers,
and related software, in a purely functional programming
language. This opens up the possibility of formally verifying
key components, especially related to security properties, in
a way that is as of yet not possible for the Linux kernel.

Moving on to the second project of extending an existing
operating system, we would likely be building off the NixOS
project, as it allows for purely functional and programmatic
builds targeting custom hardware systems [18]. The core of
NixOS, the Nix package manager, can be drastically optimized
by modifications to the Nix language and core package repos-
itory [32], which we may consider if we decide to build a
custom package manager to support an extension of NixOS.

The most abstract and eccentric of the software team’s pro-
posed research interests, homotopy type theory, is perhaps the
most well-studied and interesting of the directions proposed
so far. However, as it is extremely broad and powerful in
scope, there remains much work to be done, building off the
prior work referenced here.

The two primary applications of homotopy type theory to
our work that have been well-studied in the literature are
in developing systems for formal verification and theorem
proving and in analyzing and optimizing chip design and
circuit topology. Both of these are intriguing in their own right
and merit separate discussions and related literature reviews.

Homotopy type theory is the fundamental basis of most
modern formal verification systems, and its use has increased
tremendously as mathematicians have developed more ad-
vanced theories and explored applications to novel domains
[33]. The core idea of homotopy type theory is that it
provides an elegant language for designing formal verification
systems and writing and proving theorems about phenomena
in complex systems with many interacting parts.

Theorem provers like Lean [34] and Rcoq [35] are powerful
because of their ability to translate low-level verification tasks
into statements involving homotopy type theory. Behind the
scenes, they rely on large libraries with domain-specific proof
strategies. Writing proofs in a new domain involving different
theorems and methods will require creating custom libraries
for this purpose, using the power of advanced mathematical
machinery to describe the relatively simpler processes we are
interested in understanding. The advantage of doing this is
that we gain sweeping general insights into the nature of the
problems we are solving with exceedingly simple mathemat-
ical manipulations. This has led esteemed algebraic topologist
Norman Steenrod to quip:

“Perhaps the purpose of categorical algebra is to show that
which is trivial is trivially trivial” [36, abstract nonsense]

One interesting application of homotopy type theory would
be to develop a similar formal verification system, perhaps
based around liquid types in a purely functional programming
language. The LiquidHaskell project developed by the Pro-
gramming Systems Group at the University of California, San
Diego, is an interesting proof-of-concept of this idea [37].

The second, more direct application of category theory and
homotopy type theory in particular to our work comes from
recent research in using it to optimize electronic chip design
and study circuit topology. A general foundation for this
approach based on category theoretic formulations is given
in [38, ch. 6]. A more practical approach to analyzing circuit
topology is presented in [39], which we believe will serve as
an excellent reference for the formal verification, optimization,
and analysis of the hardware team’s designs in software. This
is still a very active and highly variable area of research, so
we anticipate that these references will provide some initial
guidance for structuring future research efforts in this space.

Lastly, we examine literature in the space of compositional
design, or co-design, a holistic, categorical framework for the
design and analysis of complex engineered systems. Co-design
breaks down dependencies between independent hardware and
software systems and analyzes each constituent subsystem
independently as a mapping between a partially ordered set of
resources and a partially ordered set of functionalities, where
order is defined based on some predefined hierarchy.

This field of study is quite recent, but applications are
numerous—the language of category theory seems, so far,
to enable the development of general insight into complex
phenomena that can help us better design novel systems,
like an open-source laptop, in which heterogeneous systems
interact to give rise to a set of core functionalities.

The primary resources that we will reference in applying
this framework to the problems we face include the seminal
textbook on co-design [40] and Professor Zardini’s thesis at
ETH Zurich [41]. Both provide a general overview of the
techniques we will need to formalize the systems we aim
to study and provide a plethora of tools to analyze and
optimize these systems. As we develop specific designs and
other concrete fabrication and software architecture plans, this
framework will play a key part in categorically improving
performance (functionalities) with minimal resources.

III. LogisTics

Broadly speaking, the OpenCompute Laboratory, abbreviated
OCL, will be split into a hardware and software team. These
teams will be further split into subteams, which will vary
depending on the project and phase that the Lab is working on.
The details are inherently vague because the terms “hardware”
and “software” are poor descriptors for the interdisciplinary
abstract research that both teams will be continually engaged
in. Below we attempt to give a detailed discussion of how
these teams may be organized and what interdisciplinary
research might look like.



A. Hardware

The hardware team will be the more practical and applied of
the two, though it too will be involved in highly theoretical re-
search in conjunction with the software team, especially in the
context of cryptography and hardware security. However, most
work will likely focus on the integration and development of
custom modules to support the constituent FOsH components
of the laptop. This is a highly non-trivial task and will involve
extensive low-level systems research, optimization, and, where
necessary, experimentation.

In order to pipeline and parallelize the development of these
complex and interconnected systems, the hardware team will
be split into several subteams. The main categories for devel-
opment will be in constructing the physical device (chassis, 10,
power), pcB design (mainboard, SoM), and chip development
(SoC/cru). These subteams are subject to change based on
evolving project needs.

B. Software

The software team will be simultaneously involved in highly
theoretical research, investigating practical implementations
of those theories to support the hardware team, and in devel-
oping software (mostly at a low level) where necessary. As
mentioned in Section I.B, we see this abstract research as
being crucial to supporting our mission and driving discovery
and innovation. In this sense, many of the projects that fall
under the domain of the “software” team have little to do with
software and even less to do with low-level implementations;
a fair number seem at first glance to have no application to
OCL’s mission, but we believe they will yield crucial insights
nevertheless.

At a high level, the software team will be split into various
research subteams. The main categories will be in hardware
security (jointly with the hardware team), lambda calculus
(with a focus on purely functional firmware), systems (with a
focus on operating system development and software deploy-
ment), homotopy type theory (with a focus on building robust,
domain-specific formal verification systems and languages
grounded in mathematical theory), and category theory and
compositional design (with a focus in rephrasing problems in
the nPOV [42] and applying category theory to optimize de-
signs and specifications using the co-design framework [41]).
New research directions are sure to emerge, and significant
departures from these themes will almost certainly occur, so
the structure of subteams should be highly liquid and prone
to change, encouraging collaboration and interdisciplinary
thinking throughout.

C. Timeline

Weekly general meetings and independently organized sub-
team meetings, as is typical for build teams, will likely be
the primary forum for research, development, and discussion
efforts. We will need to request access to relevant fabrica-
tion resources when necessary and physical space for design
meetings.

IV. HARDWARE DESIGN

A. Motivation

Proprietary hardware severely limits the modularity, security,
and trust of modern consumer electronic devices. To address
this, the hardware team’s focus is to develop and implement
fully open-source, modular, and reproducible consumer-grade
electronic devices. The team will embark on a quest to develop
a fully open-source laptop platform, the OpenLaptop, as an
ideal first and significant step towards this goal of democra-
tizing computation.

To accelerate development, the project is split into four pri-
mary stages, each representing a significant and free-standing
step towards a fully open hardware ecosystem. These stages
can be pursued in parallel or out of order when necessary or
helpful. Each stage places a heavy emphasis on documentation
and modularity, allowing the devices developed in each phase
to interact with one another for continued development.

B. Development

The first stage consists of the development of a fully func-
tional open-source laptop around a commercially available or
otherwise pre-existing risc-v SoM. This allows the team to
abstract away the logical components of the platform to focus
on the physical device, including a mainboard, power delivery,
display, and more. Almost all components for which existing
and easily sourced free implementations exist will be open-
source. However, the core of this computer—the cpu (but not
its instruction set) and rRam (but not the memory controller or
relevant firmware)—will be proprietary, which is not ideal.

The second stage is the development or adaption of a fully
open-source Risc-v based SoC or cpu which could eventually
be integrated with the laptop developed in the first stage.
Possible research directions range immensely in difficulty and
cost to implement, although there is a lot of existing work to
take advantage of. The result of this stage is a computer that
has at its core a fully open-source cpu chip. The SoM board
for this chip and the RAM remain proprietary.

The third stage is the development of an SoM which will
act as an interposer between the SoC/cpu developed in the
second stage and the mainboard developed in the first stage.
At this stage we will also want to consider open-source RAM
chips, so we can present a laptop, without a Gpu, built from
fully free and open-source hardware components, fulfilling the
first pillar of our goal (and the second as well if the software
team can complete some initial formal verification).

The last fourth stage will consist of experimental research
and development aimed at increasing performance and, cru-
cially, at developing an open-source Gpu or working with
others to create one that meets our needs. The timeline for
this stage is highly variable, but the completed product should
fulfill the aim set out at the beginning of this paper—meeting
the criteria of being fully free, both in software and hard-
ware, provably secure, and optimized for high-performance
computing. Developing this will be a continuing project, and
we anticipate annual updates on achieving and extending this
goal after the completion of the third stage.



C. Integration

This is a truly full stack project, touching on a broad range
of topics even just within the hardware team, including cap
and part fabrication for the exterior, power electronics for
the battery and charger, pcB design for the mainboard, HDL
architecture for the SoC/cpu design, and more. Completing
this project will inevitably involve hands-on exposure to nearly
every corner of electrical and computer engineering. The
hardware team will also work closely with the software team
in creating drivers and low-level code, diving into diverse
topics including formal verification and hardware security.

V. SoFTWARE DESIGN

A. Motivation

Without repeating the information already discussed in Sec-
tion I1.C, we will give a brief overview of the general research
directions, aims, and integration tasks that the software team
will tackle. The primary motivation of this team is different
from the hardware team, since it is not primarily concerned
with the development of components. This allows the software
team to pursue significant theoretical research and invest
heavily in research and development operations.

The goal of the software team is to make significant
progress in theoretical subjects that will yield the greatest ap-
plications of interest to the hardware team and help further the
overall goals of the OCL. Thus, much of the team’s research is
partly focused on implementation details to aid in integration
tasks, while the remaining research is in significantly more
theoretical subjects, but focused on applications of that theory
to hardware and software development operations.

B. Development

The primary subject areas of interest to the software team
are outlined in Section III.B. We will dive into some specific
tasks that each subteam might consider working on in support
of OCL’s mission.

Hardware security is one of the more applied branches of
the software team, and research in this subject will require
significant coordination with the hardware team to rapidly test
new prototypes implementing theoretical ideas. While there
is great potential for novel research in this area, a lot of the
initial tests will likely use the significant existing body of
research in hardware security and cryptography. Much of our
work will be focused on efficiency details and issues involved
in the practical implementation of these ideas, concerns which
are often overlooked in the literature.

We aim to create efficient hardware implementations of
multi-party computation models, garbled circuits, and modern
cryptographic primitives as FPGAs. This subteam will also
work on hardware authentication keys, algorithms for verify-
ing boot sequence authenticity, and secure information access
and transfer. This will require the development of a custom
TPM chip or similar, as well as hardware random number
generators and other important security modules.

Lambda calculus encompasses a broader range of theoret-
ical directions, including the development of purely functional
firmware, domain-specific languages, and drivers for ease of

formal verification and mathematical reasoning. This team
would also deal with integration of the produced firmware
and drivers with existing hardware, which would require
the development of memory controllers, Tpm firmware, and
possibly Ram and Gpu firmware if feasible. This subteam will
likely work closely with homotopy type theorists on formal
verification of developed systems and integration.

Systems deals with the application of high-level theoretical
constructs to the development of low-level interfaces. The
primary concern of this team will be the development of
a purely functional, likely Haskell-based, operating system.
Related concerns, like a package manager based on the purely
functional software deployment model [18], will likely fall
under this domain as well.

More applied systems work will involve porting an existing
Linux distribution, likely NixOS, to run on a risc-v based
system and interface correctly with custom hardware. This
will require significant upstream contributions to a package
repository like nixpkgs [32]. To ensure a fully open-source
software stack, we will need to create free alternatives to
necessary proprietary components and replace them.

Homotopy type theory and formal verification touch on a
vast set of subjects and are involved deeply in almost all of
the software team’s work. Here, we give a sampling of the
primary applications of these subjects to the OCL’s work.

We aim to apply formal verification wherever possible. At
the very least, this will encompass verification of function-
ality (low-level properties) and security (high-level properties)
of implementations, all firmware and drivers to ensure the
validity of monadic interfaces and existence of proper error
handling routines, and, if using a custom operating system,
basic security properties of the OS and validity of its integra-
tion with installed drivers.

Work in “pure” homotopy type theory is significantly more
theoretical and will involve developing theories for the con-
struction of a custom formal verification system. Our focus
will be on automated theorem proving in the context of
validating security properties and high-level expectations of
functionality at all levels of software development. This will
require a study of dependent types and ways these can be used
to construct and implement liquid types in an arbitrary purely
functional programming language. We will also perform a
comparison of different type systems and implement an inter-
active theorem prover with domain-specific knowledge based
on homotopy type theory.

The other primary application of homotopy type theory is
in analyzing and optimizing circuit topologies at a very low
level. The results of this analysis and its utility will be highly
dependent on the methods used by the hardware team, so this
research will need to be well coordinated to ensure it can be
appropriately integrated.

Lastly, we aim to explore compositional design as a math-
ematical framework for optimizing all components of our
laptop design at any scale. The extent to which we will be
able to apply this framework and the utility of the relevant
optimizations will again be highly dependent on coordination
with the hardware team, as co-design takes a holistic view
of design involving both the software and hardware compo-



nents. Work in this area will primarily consist of developing
the appropriate categorical diagrams to represent potential
systems for analysis.

C. Integration

Even more so than the hardware team, work on the software
team will require deep familiarity with both highly theoret-
ical concepts and the low-level applications that we seek to
develop. This dichotomy is at the heart of great insight and
innovative research, and it is our aim to work closely with
the hardware team to develop practical implementations of
workable ideas. At the core of our guiding research philos-
ophy is the nPOV [42], giving rise to categorical and higher
homotopical interpretations of low-level systems.

VI. CoNCLUSION

In this whitepaper, we have presented the foundations for the
establishment of a new research-oriented build team at MIT,
the OpenCompute Laboratory, or OCL. The goal of the OCL
is to develop a fully open-source, provably secure, and high-
performance laptop, a task which has not been successfully
attempted to date. The development of this system will mark
a major milestone for user freedom, hardware security, and
distributed, democratized computing. The core innovations
that will power the development of such a system are grounded
in rigorous, abstract mathematical theory, which provides the
tools to overcome several key hardware and software limita-
tions we anticipate.

Our novel approach to this project, as well as our team’s
unique structure as a research-oriented organization devoted
to promoting user freedom, is optimal for the task that we
aim to solve, which we believe is a significant component of
the single most important computing movement of the last
few decades or so. We end this proposal by reiterating our
steadfast determination to the completion of this vision, which
will require ingenuity in design, abstraction and philosophy,
and likely the endurance of a significant amount of ardor,
tumult, and obloquy.
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